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Chapter Two

Introduction to Quantum Mechanics
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Chapter Objectives

Give the basic principles of quantum mechanics,

Illustrate Schrodinger's wave equation.

Consider some applications of Schrodinger's wave equation to various

potential functions.
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2.1 Principles of Quantum Mechanics

2.1 Principles of Quantum Mechanics

Kinetic Energy: It is the energy of an object that it possesses due to its motion.

KE =
1

2
m�2 ; (1)

-) m is the mass and � is the velocity of the object.

Potential Energy: It is the energy of an object that it possesses due its position relative to
other objects.

Figure: An example for kinetic energy.

Figure: An example for potential
energy.

Figure: Kinetic and potential energies
in an electron.
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2.1 Principles of Quantum Mechanics

There are three principles for the quantum mechanics:
1) Energy Packets

Photoelectric e�ect: Applying light beams with a certain intensity and frequency on a clean
metal would free electrons.
-) Newtons' laws: Electron kinetic energy should change with the light intensity and NOT
with the frequency.
-) Actual observation: At a constant intensity, electron kinetic energy is changing linearly
with the light frequency with a limiting frequency, below which no electron is produced.

  

 

 

𝑓0 𝑓 

Figure: (a)Photoelectric e�ect. (b) Kinetic energy of the electrons versus frequency

Interpretation: Light/electromagnetic waves consist of discrete units of energy called quanta
or photon that are proportional to the frequency.
Maximum kinetic energy of the released electron is

KEmax = hf � hf0; (2)

-) h = 6:625 � 10�34 J.s is Planck's constant, f is the frequency of the wave, f0 is the
limiting frequency, hf is the incident photon energy and hf0 is the work function or the
minimum energy required to remove an electron from the surface. 5 / 16



2.1 Principles of Quantum Mechanics

2) Wave-Particle Duality: Atomic particles do have continuous waves.

In quantum mechanics, the photon momentum is

P = h=� ; (3)

-) � is the wavelength of the light wave.

The wavelength of a particle is
� = h=P ; (4)

-) � is called de Broglie wavelength of the matter wave and P is the momentum of the
particle.

In Newtons' classic mechanics, P = m�.
The wavelength of the particle is then

� =
h

m�
: (5)

Davisson and Germer Experiment: They
used electron gun to hit a crystal of nickel
and the electrons are scattered in a direc-
tion � 2 [0; 90]. The peak of scattering
intensity is due to the constructive addi-
tion of electron waves.

 

 

(a) (b) 

Figure: Experimental arrangement of
Davisson and Germer experiment.
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2.1 Principles of Quantum Mechanics

Example 2.1: A metal has a work function of 4.3 V.
What is the minimum photon energy in Joule to emit an electron from this metal through the
photo-electric e�ect?
What are the photon frequency in Terahertz and the photon wavelength in micrometer?
What is the corresponding photon momentum?
What is the velocity of a free electron with the same momentum?
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2.1 Principles of Quantum Mechanics

3) Uncertainty Principle

It is not possible to simultaneously describe with absolute accuracy the position and mo-

mentum of atomic particles.
�x�P � } ; (6)

-) �x is the uncertainty in position, �P is the uncertainty in momentum, } = h
2�

is the
modi�ed Planck's constant.

It is not possible to simultaneously describe with absolute accuracy the time and the energy
of atomic particles.

�t�E � } ; (7)

-) �t is the uncertainty in time and �E is the uncertainty in energy.

Probability is used to describe �nding a particle of speci�c momentum at a particular
position or of speci�c energy at a particular time.

We need to develop a probability density function (pdf) to know the statistical distribution
of P over x or E over t.
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2.2 Schrodinger's Wave Equation

2.2 Schrodinger's Wave Equation

Schrodinger's wave equation describes the space-time motion of an electron in a crystal. It
incorporates the energy packets, wave-particle duality and uncertainty principles.

The 1d Schrodinger's wave equation is

� }2

2m

@2	(x ; t)

@x2
+ V (x)	(x ; t) = j}

@	(x ; t)

@t
; (8)

-) 	(x ; t): The wave function for the particle. It is the solution of (8),
-) V (x): The potential energy that particle experiences as particle moves in the x direction.
V (x) is known,
-) j : It is the imaginary constant, j =

p�1.
Schrodinger's Wave Equation is a 2nd order partial di�erential equation.

Mathematically, 	(x ; t) is a complex function, but j	(x ; t)j2 = 	(x ; t)� 	�(x ; t) is always
a real function. Here, 	�(x ; t) is the complex conjugate of 	(x ; t).

The function j	(x ; t)j2 represents the probability density function (pdf) for �nding the
particle at a speci�c time.
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2.2 Schrodinger's Wave Equation

2.2 Schrodinger's Wave Equation (cont.)

Separation of variables technique: 	(x ; t) is separated into two functions, one is dependent
on position only and the other one time only.

	(x ; t) = 	(x)�(t) : (9)

Plug (9) in (8) and divide by 	(x ; t) = 	(x)�(t). We get two di�erential equations that
both must equal to the total energy E .

The time-dependent part of Schrodinger's equation: j} d�(t)
dt

= E�(t) .
-) It is 1st order di�erential equation that has the solution:

�(t) = e�j(E=})t = e�j!t :

-) �(t) is a sinusoidal wave with radian time frequency, ! = E=} = 2�f .
The time-independent part of Schrodinger's equation is

d2	(x)

dx2
+

2m

}2
(E � V (x))	(x) = 0 : (10)

The solution of (10) has the form

	(x) = Aey1x + Bey2x ; (11)

-) y1;2 are the roots of the characteristic equation: 0 = y2 + 2m
}2

(E � V ),

y1;2 = �
r
�2m

}2
(E � V ) :

-) A and B are constants that are obtained from the boundary conditions. 10 / 16



2.2 Schrodinger's Wave Equation

2.2.1 Boundary Conditions

-) Boundary conditions are di�erent from initial conditions. In Boundary conditions, we know the
values of the function and its derivatives at di�erent points. In initial conditions, the values of
the function and its derivatives are at the same point.
-) Boundary conditions for the wave equation:

1 The area under j	(x)j2 is Z 1

�1

j	(x)j2dx = 1 : (12)

2 	(x) must be �nite, single-valued, and continuous.
3 d	(x)=dx , i.e., the slop, must be �nite, single-valued, and continuous.

-) In �g. (a), the wave function and its derivative are continuous. In �g. (b), the wave function
is continuous while its derivative is discontinuous.

 

Figure: Potential functions and corresponding wave function solutions for the case (a) potential function is �nite everywhere and
(b) potential function is in�nite in some regions.
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2.3 Applications of Schrodinger's Wave Equation

2.3 Applications of Schrodinger's Wave Equation

i) Electron in Free Space

Free particle with mass m, �nite energy E and zero potential function V (x) = 0 over x .
The particle wave propagates without barriers at constant speed and kinetic energy.

Let k =
q

2mE
}2

. The solution of (11) becomes

	(x) = Ae jkx + Be�jkx :

The total wave equation 	(x ; t) has the form

	(x ; t) = Ae j(kx�!t) + Be�j(kx+!t) :

-) k is called the wave number and ! is the usual radian time frequency,

	(x) has a traveling wave, exp (jkx), in the +x direction and a traveling wave, exp (�jkx),
in the �x direction,

Assume the particle is traveling in the +x direction. Then, B = 0 and

	(x) = Ae jkx :

Since k =
q

2mE
}2

= P=} and the deBroglie wavelength � = 2�}=P, then k = 2�=�.

j	(x ; t)j2 = jAj2. This is uniform distribution which means that one can �nd the particle
everywhere in the free space with equal probability.
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2.3 Applications of Schrodinger's Wave Equation

ii) The In�nite Potential Well

The particle motion is con�ned within the space, 0 � x � a.

The potential function is

V (x) =

(
0; 0 � x � a

1; x < 0 and x > a

 

Figure: Potential function V versus the position x .

The probability of �nding the particle in regions I and III is zero if E is �nite. The boundary
conditions are 	(0) = 	(a) = 0.

In region II, time-independent wave equation:
d2	(x)

dx2
+ 2m

}2E
	(x) = 0 : It has the solution

	(x) = A sin (kx) + B cos (kx) ; with 	(0) = 	(a) = 0 : (13)

Plugging the boundary conditions in (13). The constants A and B are

0 = A sin(ka)

0 = B
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2.3 Applications of Schrodinger's Wave Equation

The In�nite Potential Well (cont.)

A cannot be zero since 	(x) would be zero in the region 0 � x � a. Therefore sin(ka) = 0,
which is equivalent to

k =
�n

a
; (14)

n = �1;�2;�3; � � � is an integer and called the quantum number.

A is found from the normalization boundary condition
R1
�1 j	(x ; t)j2dx = 1. Then,

A =
p
2=a

The wave function for the particle in the in�nite potential well becomes

	(x) =

r
2

a
sin
��nx

a

�
; n = 1; 2; � � �

Since k must have discrete values from (14) and k =
q

2mE
}2

. This gives

E =
�2}2

2ma2
n2 : (15)

- Particle energy is quantized and only certain values are allowed.
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2.3 Applications of Schrodinger's Wave Equation

The In�nite Potential Well (cont.)

 

Figure: (a) The �rst four allowed energy levels, (b) wave functions 	n(x), and (c) j	n(x)j
2 is proportional to the pdf of �nding

a particle at a given point in the in�nite potential well.
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2.3 Applications of Schrodinger's Wave Equation

Example 2.2: Consider the step potential function shown below. Assume that a 
ux of particles
is incident on a potential barrier with energy of V0. The particles are traveling in the x direction
and they are originated from x = �1. The total energy is �xed at E .
(i) Let the wavenumbers in regions I and II be k1 and k2. Provide expressions for k1 and k2.
(ii) Derive the time-independent wave solutions that apply in each region.
(iii) Write the set of equations that result from applying the boundary conditions.
(iv) Derive an expression, in terms of the constants k1 and k2, for the re
ection coe�cient R.
The re
ection coe�cient is de�ned as the ratio of the re
ected 
ux of particles in region II to the
incident 
ux in region I.

Figure: The step potential function.

End of Chapter Two
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